Metallkomplexe mit funktionalisierten Schwefel-Liganden, III<sup>[1]</sup>



# Reaktionen von $(Ph_3P)_2Pt(\eta^2-C_2H_4)$ mit acyclischen und cyclischen Thiosulfinaten: Platin(II)-thiolato-Komplexe mit Sulfenato-Liganden. Kristallstrukturanalyse von (4-Sulfido-1-b<u>utansulfenato-S,S')-</u> bis(triphenylphosphan)platin(II) $(Ph_3P)_2Pt-S(O)-[CH_2]_4-S^{*}$

Wolfgang Weigand\*<sup>a</sup>, Gabriele Bosl<sup>a</sup>, Christian Robl<sup>a</sup> und Walter Amrein<sup>b</sup>

Institut für Anorganische Chemie der Universität München<sup>a</sup>, Meiserstraße 1, W-8000 München 2

Laboratorium für Organische Chemie der ETH-Zürich, ETH-Zentrum<sup>b</sup>, Universitätstraße 16, CH-8092 Zürich

Eingegangen am 30. November 1991

Key Words: Thiosulfinates / Thiolato complexes / Sulfenato complexes / Platinum complexes

Metal Complexes of Functionalized Sulfur-Containing Ligands, III<sup>[1]</sup>. – Reactions of  $(Ph_3P)_2Pt(\eta^2-C_2H_4)$  with Acyclic and Cyclic Thiosulfinates: Platinum(II)-thiolato Complexes with Sulfenato Ligands. Crystal Structure Determination of (4-Sulfido-1-butanesulfenato-*S*,*S'*) bis(triphenylphosphane) platinum(II)  $(Ph_3P)_2Pt-S(O) - [CH_2]_4 - S^{\pm}$ 

Oxidative addition of acyclic thiosulfinates R' - S(O) - S - R(1a:  $R' = R = CH_{3}$ ; 1b: R' = R = Ph; 1c:  $R' = R = p-CH_3C_6H_4$ ; 1d:  $R' = p-ClC_6H_4$ ,  $R = C_6H_5$ ) to  $(Ph_3P)_2Pt(\eta^2-C_2H_4)$ (4) leads to the monomeric *trans*-configurated complexes  $(Ph_3P)_2Pt[S(O)R'](SR)$  (5a - d) which loose one PPh<sub>3</sub> ligand in solution and form the dimetallic thiolato-bridged compounds  $[(Ph_3P)Pt[S(O)R'](\mu-SR)]_2$ . The cyclic thiosulfinates 1,2-dithiane S-oxide (2) and 1,4-dihydro-2,3-benzodithiine S-oxide (3) react

Thiosulfinate (Thiosulfinsäure-S-ester) R' - S(O) - SRsind Ester der im freien Zustand nicht stabilen Thiosulfinsäuren R-S(O)-SH und können in Extrakten von Allium sativum L. (Knoblauch)<sup>[2]</sup> nachgewiesen werden. Inzwischen konnten von uns<sup>[1,3]</sup> und von Shaver<sup>[4]</sup> Anionen der Thiosulfinsäure an Titan(IV) und Ruthenium(II) stabilisiert werden. Besondere Aufmerksamkeit kommt den Thiosulfinaten aufgrund ihres breiten Spektrums an biologischen und pharmakologischen Aktivitäten zu; sie wirken antiinflammatorisch und Thrombozyten-Aggregations-hemmend<sup>[2,5]</sup>. Ihre antiinflammatorische Wirkung beruht auf einer Hemmung der 5-Lipoxygenase und der Cyclooxygenase<sup>[6]</sup>. Intensiven Studien auf dem Gebiet der Thiosulfinate nach organischpräparativen Gesichtspunkten<sup>[7]</sup> steht eine geringe Beachtung dieser Substanzklasse in der metallorganischen und Koordinations-Chemie gegenüber. Die offenkettigen Thiosulfinate sind relativ unbeständige Substanzen; bei Arenthiosulfinaten wird im Vakuum bei Raumtemperatur eine spontane Disproportionierung in das entsprechende Disulfid R'-S-S-R und das Thiosulfonat  $R'-S(O)_2-S-R$ (R = Ph, p-Tol) beobachtet<sup>[8]</sup>. Die Schwefel-Schwefel-Bindungsenergie in den Thiosulfinaten ist ungewöhnlich schwach und etwa um 20 kcal/mol kleiner als in den entsprechenden Disulfiden (Dimethyldisulfid 74, Methyl-methanthiosulfinat 46, Diphenyldisulfid 55, Phenyl-benzolthiowith 4 to yield the monomeric seven-membered chelate  $(Ph_3P)_2Pt-S(O)-(CH_2)_4-S$  (7) and the dimetallic complex  $[(Ph_3P)Pt-S(O)-CH_2-C_6H_4-CH_2-\mu-S]_2$  (8), respectively. In 7, characterized by X-ray diffraction, a tetrahedral distortion of the square planar coordination of the platinum(II) atoms is remarkable; the planes Pt,P(1),P(2) and Pt,S(1),S(2) form an angle of 16.1°.

sulfinat 36 kcal/mol)<sup>[9]</sup>. Damit sollten Thiosulfinate für Reaktionen prädestiniert sein, die zu einer Spaltung der S-S-Bindung führen. In der vorliegenden Arbeit berichten wir über die Reaktionen von  $(Ph_3P)_2Pt(\eta^2-C_2H_4)$  mit offenkettigen und cyclischen Thiosulfinaten.

#### A. Präparative und spektroskopische Ergebnisse

Die acyclischen Thiosulfinate 1a - d und das cyclische 1,4-Dihvdro-2,3-Benzodithiin-S-oxid (3) erhält man durch Oxidation der entsprechenden Disulfide mit m-Chlorperbenzoesäure (mCPBA), 1,2-Dithian-S-oxid (2) ist durch Oxidation von 1,2-Dithian mit Wasserstoffperoxid zugänglich<sup>[10,11]</sup>. Der Platin(0)-Komplex  $(Ph_3P)_2Pt(\eta^2-C_2H_4)$  (4) reagiert bei Raumtemperatur mit den offenkettigen Thiosulfinaten 1a-d in Toluol augenblicklich zu den monomeren Komplexen 5a-d, die den Thiolat- und Sulfenat-Liganden enthalten. Am Beispiel der Reaktion von 4 mit Phenyl-benzolthiosulfinat (1b) konnte <sup>31</sup>P-NMR-spektroskopisch eine trans-konfigurierte Platin(II)-Spezies nachgewiesen werden; die Isolierung der monomeren Verbindungen gelang nur für 5a, b. Innerhalb von 12-17 Stunden dimerisieren 5a – d unter Abspaltung eines Äquivalents Triphenylphosphan vollständig zu den zweikernigen Thiolatoverbrückten Verbindungen 6a-d. Der Sulfenat-Ligand nimmt die terminale Position ein. Mit Alkyl- und Aryldisulfiden reagieren Palladium(0)- und Platin(0)-Verbindungen zu monomeren Bisthiolato- und zu dimeren Thiolato-verbrückten Komplexen, jedoch sind längere Reaktionszeiten und höhere Temperaturen nötig<sup>[12]</sup>. Im Gegensatz zum Platin-Komplex 4 führt die oxidative Addition von Phenylbenzolthiosulfinat an Pd(PPh<sub>3</sub>)<sub>4</sub> zum bekannten Thiolatoverbrückten Komplex [Pd(PPh<sub>3</sub>)(SPh)(µ-SPh)]<sub>2</sub><sup>[12b]</sup>. Das bei der Deoxygenierung der Sulfenat-Funktion freiwerdende  $Ph_3P = O$  läßt sich <sup>31</sup>P-NMR-spektroskopisch ( $\delta = 25.7$  in Toluol) nachweisen. Mit der Reaktion von Thiosulfinaten mit Platin(0)-Verbindungen fanden wir einen neuartigen Weg zu Sulfenato-Komplexen, in denen Anionen der im freien Zustand instabilen Sulfensäuren  $R - SOH (R = CH_3)$ Ph, p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, p-ClC<sub>6</sub>H<sub>4</sub>)<sup>[13]</sup> an Platin(II) koordiniert vorliegen. Weitere Vertreter dieser Verbindungsklasse sind noch recht selten<sup>[14-16]</sup>.



Werden nun cyclische Thiosulfinate mit 4 zur Reaktion gebracht, so sollten gezielt Komplexe entstehen, die eine 1,4-Sulfenato-thiolato-Gruppierung enthalten. Bisher sind von dieser Klasse von Liganden, die im freien Zustand nicht zugänglich sind, nur 1,2-Ethan-sulfenato-thiolato-Spezies bekannt. Diese wurden kürzlich von Lorenz et al. durch partielle Oxidation der 1,2-Ethandithiolato-Komplexe  $[(OC)_3FeSCHR]_2$  erhalten<sup>[17]</sup>. Wir synthetisierten durch oxidative Addition von 1,2-Dithian-S-oxid (2) an 4 den monomeren cyclischen Platin(II)-Komplex 7 mit dem 1,4-Butan-sulfenato-thiolato-Liganden. Das bicyclische Thiosulfinat 3 reagiert mit 4 zu der in allen gängigen Lösungsmitteln schwerlöslichen Thiolato-verbrückten Verbindung 8.



In den IR-Spektren (Exp. Teil) der Komplexe 5-8 sind die vS = O-Banden gegenüber denen der freien Thiosulfinate 1-3 (1065-1090 cm<sup>-1</sup>) nach kleineren Wellenzahlen  $(975 - 1000 \text{ cm}^{-1})$  verschoben; hier muß ein wesentlicher Metall-Schwefel- $\pi$ -Bindungsanteil angenommen werden. Ähnliche Werte treten bei den bekannten Iridium- (ca. 1010  $(cm^{-1})^{[14]}$  und Cobalt-Komplexen (ca. 950-990 cm<sup>-1</sup>)^{[15e]} und bei den von uns hergestellten Pt(II)-Komplexen [trans- $(Ph_3P)_2Pt[S(O)R](Nphth); Nphth = Phthalimid]^{[3a, 16]} auf.$ Bei den monomeren Verbindungen 5a, b kann aus dem Bandenmuster der PPh<sub>3</sub>-Absorptionen bei ca. 500 cm<sup>-1[18]</sup> und aus dem <sup>31</sup>P-NMR-Spektrum von 5b auf eine trans-Geometrie geschlossen werden. Im cis-konfigurierten Komplex 7 erkennt man hingegen wegen der nichtäguivalenten P-Atome ein typisches AB-Spinsystem. Aus dem Vergleich der beiden  ${}^{1}J({}^{31}P{}^{195}Pt)$ -Kopplungskonstanten (Exp. Teil) geht hervor, daß der Sulfenat-Ligand einen stärkeren trans-Einfluß als die Thiolat-Gruppe ausübt. Die Zuordnung der Protonen und C-Atome im Siebenring von 7 folgt eindeutig aus <sup>1</sup>H-<sup>1</sup>H-2D-COSY- und <sup>1</sup>H-<sup>13</sup>C-Korrelations-NMR-Experimenten (Exp. Teil). Ein wesentliches Merkmal des <sup>1</sup>H-<sup>13</sup>Ckorrelierten-NMR-Spektrums von 7 ist die unterschiedlich ausgeprägte Diastereotopie der Protonen H<sup>1</sup>-H<sup>8</sup> an den Methylengruppen des Siebenrings; dabei sind die zu den Protonen H<sup>1</sup> und H<sup>2</sup> gehörigen Signalgruppen am weitesten voneinander getrennt. Auffallend ist die Verschiebung des <sup>13</sup>C-NMR-Signals von C-2 nach tiefem Feld ( $\delta = 25.9$ ) im Vergleich zum entsprechenden C-Atom im Edukt 2 ( $\delta$  = 15.1). Dies ist die Folge des fehlenden abschirmenden  $\gamma_{so}$ -Effekts<sup>[19]</sup>, der bei cyclischen Sechsring-Thiosulfinaten stark ausgeprägt vorliegt.

Wegen des ungünstigen Lösungsverhalten der Komplexe **6a**-**d** und **8** entfällt die Möglichkeit der NMR-Spektroskopie und damit auch der Aussage über das Auftreten von cis-, *trans-*, *syn-* und *anti-*Isomeren. Stattdessen wurden Fast-Atom-Bombardment-Massenspektren (FAB-MS)<sup>[20]</sup> in 3-Nitrobenzylalkohol als Matrix aufgenommen. Die Fragmentierung der dimetallischen Komplexe **6a**-**c** verlaufen sehr übersichtlich. Das Molekül-Ion tritt bei allen untersuchten Verbindungen auf und zerfällt unter Abspaltung der Sulfenato-Liganden. Das resultierende Thiolato-verbrückte Fragment vom Typ [(Ph<sub>3</sub>P)Pt( $\mu$ -SR)]<sub>2</sub> (R = Me, Ph, *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) zeichnet sich durch hohe Stabilität aus. Der Zerfall des stabilen Molekül-Ions von **8** führt über die intensitätsschwachen Fragmente [M - C<sub>8</sub>H<sub>8</sub>OS]<sup>+</sup> und [M -C<sub>8</sub>H<sub>8</sub>OS<sub>2</sub>]<sup>+</sup> zum sehr stabilen Ion [(Ph<sub>3</sub>P)Pt + H]<sup>+</sup>. Metallkomplexe mit funktionalisierten Schwefel-Liganden, III

### B. Kristallstrukturanalyse von 7·CH<sub>2</sub>Cl<sub>2</sub>

Die Struktur von 7 im festen Zustand wurde durch eine Kristallstrukturanalyse (Abb. 1) ermittelt. Die kristallographischen Daten sind in Tab. 1 zusammengefaßt, in Tab. 2 die Atomkoordinaten. Bemerkenswert sind die ausgeprägte Wannenform und vor allem eine relativ starke tetraedrische Verzerrung in 7, die für Pt(II)-Komplexe untypisch ist. Der Abstand der Atome P(2)/S(2) voneinander liegt geringfügig über der Summe der beiden van-der-Waals-Radien. Bei einer hypothetisch streng coplanaren Anordnung der P- und S-Atome um das Pt-Atom würde hingegen der P(2)/P(2)-Abstand unterhalb der Summe der van-der-Waals-Radien liegen. Dies erklärt, warum die Ebenen Pt,P(1),P(2) und Pt,S(1),S(2) einen Winkel von 16.1° einschließen. Diese unseres Wissens sehr selten beoachtete Verzerrung bei Pt(II)-Komplexen<sup>[21]</sup> wird noch bei einigen Pd(II)N<sub>2</sub>S<sub>2</sub>- $(10.7-17^{\circ})^{[22]}$  und Pd(II)N<sub>4</sub>-Komplexen<sup>[23]</sup> (25.6°) gefunden. Erwähnenswert ist auch der Unterschied der Bindungslängen von Pt-P(1) [230.5(3) pm] und Pt-P(2) [233.3(2) pm]. Dieser erklärt sich durch den stärkeren trans-Einfluß der Sultenatogruppe, die trans zu P(2) koordiniert ist. Der S(1) - C(1)-Abstand [185.1(9) pm] ist etwas länger als der S(2)-C(4)-Abstand [180.4(10) pm], dabei ist der

Tab. 1. Kristallographische Daten von 7 · CH<sub>2</sub>Cl<sub>2</sub>

Summenformel C<sub>41</sub>H<sub>40</sub>Cl<sub>2</sub>OP<sub>2</sub>PtS<sub>2</sub>, Molmasse 940.8, Kristallabmessungen 0.14 × 0.24 × 0.6 mm, Raumgruppe P1 (Nr. 2); Z = 2, a = 1163.0(2), b = 1293.0(2), c = 1497.0(2) pm;  $\alpha = 103.13(1)$ ,  $\beta = 100.14(1)$ ,  $\gamma = 111.70(1)^{\circ}$ ;  $V = 1951.1 \times 10^{6}$  pm<sup>3</sup>,  $Q_{ber.} = 1.60$  g/cm<sup>3</sup>,  $\mu = 39.9$  cm<sup>-1</sup>, Strahlung: Graphit-monochromatisierte Mo-K<sub>a</sub>, Temperatur 295 K, 20-Bereich:  $5-50^{\circ}$ , Abtastgeschwindigkeit:  $1.50-14.65^{\circ}$ /min, Abtastmodus:  $\omega$ , gemessene Reflexe: 7182, symmetrieunabhängige Reflexe: 6819, davon 5677 mit  $|F| > 3\sigma_{|F|}$ ,  $R_{int} = 0.0249$ , Korrekturen: LP-, emirische Extinktionsund numerische Absorptions-Korrektur; Programmsystem: SHELXTL-PLUS, verfeinerte Parameter: 451, Gewichtung:  $w = 1/\sigma_{|F|}^2$ , H-Atome: geometrisch positioniert, Nicht-H-Atome: anisotrope Temperaturfaktoren, R = 0.0516,  $R_w = 0.0384$ ,  $R_g = 0.0370$ , Extrema der letzten Differenz-Fouriersynthese: +1.36/  $-1.19 e \cdot 10^{-6}$  pm<sup>-3</sup>



Abb. 1. Molekülstruktur von 7 · CH<sub>2</sub>Cl<sub>2</sub> (Phenylgruppen der Triphenylphosphan-Liganden nicht abgebildet). Ausgewählte Bindungsabstände [pm] und -winkel [°]: Pt – P(1) 230.5(3), Pt – P(2) 233.3(2), Pt – S(1) 233.3(2), Pt – S(2) 233.4(3), O – S(1) 144.8(7), S(1) – C(1) 185.1(9), S(2) – C(4) 180.4(10), C(1) – C(2) 152.9(10), C(2) – C(3) 148.9(18), C(3) – C(4) 153.3(15); P(1) – Pt – P(2) 97.8(1), S(1) – Pt – S(2) 89.0(1), Pt – S(1) – O 114.9(3), Pt – S(1) – C(1) 108.2(3), O – S(1) – C(1) 103.5(4), Pt – S(2) – C(4) 112.2(3)

Winkel Pt-S(1)-C(1) um 4° kleiner als der Winkel Pt-S(2)-C(4). Diese Ergebnisse sind gegensätzlich zu den Befunden, die aus der Kristallstrukturanalyse von  $[(OC)_3Fe]_2SC_2H_4S(O)$  resultieren; hier betragen die Abstände S(O)-C und S-C 180.5(4) bzw. 184.4(4) pm<sup>[17a]</sup>. Die S=O-Bindungslänge in 7 wurde zu 144.8(7) pm bestimmt und ist mit der im Eisenkomplex<sup>[17a]</sup> vergleichbar; sie ist jedoch merklich kürzer als in  $[(en)_2Co(S(O)-[CH_2]_2-NH_2)]^{2+}$  $[155.2(3) pm]^{[15e]}$ .

Herrn Professor Dr. W. Beck danken wir für sein förderndes Interesse und für die großzügige Bereitstellung von Institutsmitteln, Herrn Professor Dr. H. Wagner, Institut für Pharmazeutische Biologie, München, für wertvolle Diskussionen, Herrn Apotheker Dr. W. Breu für die Bereitstellung von p-ClC<sub>6</sub>H<sub>4</sub>S(O)SC<sub>6</sub>H<sub>5</sub> und Herrn Dr. K. Karaghiosoff für die Aufnahme von 2D-NMR-Spektren. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für großzügige Förderung. Für ein Liebig-Stipendium ist W. W. dem Fonds der Chemischen Industrie zu besonderem Dank verpflichtet.

## **Experimenteller** Teil

Alle Arbeiten wurden unter Stickstoff in destillierten Lösungmitteln durchgeführt. - IR: (a): Perkin-Elmer-IR-Doppelstrahlphotometer 325, (b): Nicolet ZDX 5. - <sup>1</sup>H- und <sup>13</sup>-C-NMR: (c): Jeol EX 400.  $-{}^{31}$ P-NMR: (d): Jeol GSX 270; (e):  $\delta$ -Werte, bezogen auf TMS (intern), (f):  $\delta$ -Werte, bezogen auf 75proz. H<sub>3</sub>PO<sub>4</sub> (extern). - FAB-MS: (g): Positive-Ionen-FAB-Massenspektrometrie; die Massenzahlen beziehen sich auf die Isotope 32S und 195Pt; die für die Fragment-Ionen berechneten und beobachteten Isotopenmuster stimmen innerhalb der Fehlergrenzen überein. Die Verbindungen wurden in wenig Acetonitril oder Dichlormethan gelöst und 1 µl dieser ca. 2proz. Lösungen auf einer Standard-Probenspitze aus rostfreiem Stahl mit 1-µl-Matrix (3-Nitrobenzylalkohol, Fluka) versetzt, das Gemisch wurde nach kurzem Abblasen durch die Vakuumschleuse eingeführt und mit einer VG-LSIMS-Kanone (Cs<sup>+</sup>, 35 kV, 2 µA Strahlstrom) ionisiert. Die Messung des FAB-Massenspektrums erfolgte mit einem VG-ZAB-VSEQ-Spektrometer bei 8 kV Beschleunigungsspannung mit einer Auflösung  $(m/\Delta m)$  von 2000 in MS1. Die Masseneichung und Auswertung wurde mit der OPUS- Software von FISONS/VG vorgenommen. - Die Edukte  $R'-S(O)-S-R^{[10a]}$  (1a:  $R' = R = CH_3$ ; 1b: R' = R = Ph; 1c:  $\mathbf{R}' = \mathbf{R} = p - CH_3C_6H_4$ ; 1d:  $\mathbf{R}' = p - ClC_6H_4$ ,  $\mathbf{R} = C_6H_5$ ), 1,2-Dithian-S-oxid<sup>[10c]</sup> (2), 1,4-Dihydro-2,3-benzodithiin-S-oxid<sup>[10b]</sup> (3) und  $(Ph_3P)_2Pt(\eta^2-C_2H_4)^{[24]}$  (4) wurden nach Literaturangaben erhalten.

trans-(Methansulfenato-S) (methanthiolato) bis(triphenylphosphan) platin(II) (5a): Eine Lösung von 300 mg (0.4 mmol) 4 in 10 ml Toluol wird bei 0°C tropfenweise mit einer Lösung von 44 mg (0.4 mmol) 1a in 3 ml Toluol versetzt. Nach etwa 15 min fällt ein hellgelber, voluminöser Niederschlag aus, der nach insgesamt 45 min abzentrifugiert wird. Die überstehende orangefarbene Lösung wird verworfen und der gelbe Niederschlag zweimal mit 5 ml Toluol und 10 ml Hexan gewaschen. Das hellgelbe Pulver wird im Hochvak. getrocknet, Ausb. 176 mg (53%), Zers.-P. 212°C. – IR (a) (KBr):  $\tilde{v} = 979 \text{ cm}^{-1}$  (ssh) (S=O). – <sup>31</sup>P-NMR (d, f) (CHCl<sub>3</sub>):  $\delta =$ 24.95 [s mit <sup>195</sup>Pt-Satelliten, <sup>1</sup>J(<sup>195</sup>Pt<sup>31</sup>P) = 3253 Hz].

 $\begin{array}{c} C_{38}H_{36}OP_2PtS_2 \mbox{ (829.9)} & \mbox{Ber. C 55.00 H 4.37 S 7.73} \\ & \mbox{Gef. C 54.63 H 4.54 S 7.82} \end{array}$ 

trans-(Benzolsulfenato-S) (benzolthiolato)bis(triphenylphosphan)platin(II) (5b): Zu einer Lösung von 150 mg (0.2 mmol) 4 in 10 ml Toluol wird bei Raumtemp. langsam eine Lösung von 47 mg (0.2 mmol) 1b in 3 ml Toluol getropft. Die Lösung verfärbt sich augenblicklich nach Dunkelorange. Nach ca. 30 min entsteht ein intensiv gelber Niederschlag, der abzentrifugiert und wie für **5a** beschrieben weiter verarbeitet wird; zitronengelbes Pulver, Ausb. 93 mg (49%), Schmp. 207–209°C. – IR (b) (KBr):  $\tilde{v} = 999/987$  cm<sup>-1</sup> (s) (S=O). – <sup>31</sup>P-NMR (d, f) (Toluol):  $\delta = 21.16$  [s mit <sup>195</sup>Pt-Satelliten, <sup>1</sup>J(<sup>195</sup>Pt<sup>31</sup>P) = 3198 Hz].

 $\begin{array}{rl} C_{48}H_{40}OP_2PtS_2 \ (954.0) & \mbox{Ber. C} \ 60.43 \ H \ 4.23 \ S \ 6.72 \\ & \mbox{Gef. C} \ 59.63 \ H \ 4.39 \ S \ 7.13 \end{array}$ 

Herstellung der dimetallischen Pt(II)-Komplexe **6a-d** und **8**. – Allgemeine Arbeitsvorschrift (AAV1): Zu einer Lösung von 0.2-0.4mmol **4** in 10-15 ml Toluol gibt man tropfenweise die äquivalente Menge Thiosulfinat (1a-d/3) in 3-5 ml Toluol. Wie für **5a**, **b** beschrieben, fällt innerhalb von ca. 30 min ein Niederschlag aus, der jedoch 12-15 h gerührt wird. Das Produkt wird abzentrifugiert, und die überstehende Lösung verworfen. Nach zweimaligem Waschen mit Toluol und Hexan wird das Produkt im Hochvak. getrocknet, das in Toluol oder THF unlöslich, in CH<sub>2</sub>Cl<sub>2</sub> bzw. CHCl<sub>3</sub> unter rascher Zersetzung löslich ist.

 ${(Ph_3P)Pt[S(O)CH_3][\mu-SCH_3]}_2$  (6a): 290 mg (0.39 mmol) 4 und 47 mg (0.4 mmol) 1a werden in 16 ml Toluol 15 h gerührt; hellgelbes Kristallpulver, Ausb. 154 mg (68%). – IR (a) (KBr):  $\tilde{v} =$ 977 cm<sup>-1</sup> (ssh) (S=O). – MS (g): m/z (%) = 1134 (13) [M<sup>+</sup>], 1008 (100) [M<sup>+</sup> – 2H<sub>3</sub>CS(O)].

 ${(Ph_3P)Pt[S(O)Ph][\mu-SPh]}$  (6b): 150 mg (0.2 mmol) 4 werden mit 47 mg (0.2 mmol) 1b in 12 ml Toluol 14 h gerührt; goldgelbes Pulver, Ausb. 104 mg (75%), Zers.-P. 192–195°C. – IR (b) (KBr):  $\tilde{v} = 1000/992 \text{ cm}^{-1}$  (s) (S = O). – MS (g): m/z (%) = 1382 (2) [M<sup>+</sup>], 1132 (88) [M<sup>+</sup> - 2H<sub>3</sub>C<sub>6</sub>S(O)].

 $\begin{array}{rl} C_{60}H_{50}O_2P_2Pt_2S_4 \ (1383.3) & \mbox{Ber. C} 52.10 \ \ H \ 3.65 \ \ S \ 9.27 \\ Gef. \ C \ 51.35 \ \ H \ 3.73 \ \ S \ 9.19 \end{array}$ 

 $\{(Ph_3P)Pt[S(O) - p-CH_3C_6H_4][\mu-S - p-CH_3C_6H_4]\}_2^3 (6c): 150 mg (0.2 mmol) 4 werden mit 53 mg (0.2 mmol) 1c in 12 ml Toluol umgesetzt. Nach 8 h gemäß AAV1 erhält man ein intensiv gelbes Pulver, Ausb. 97 mg (67%), Schmp. 214–216°C. – IR (b) (KBr): <math>\tilde{v} = 996 \text{ cm}^{-1}$  (s) (S=O). – MS (g): m/z (%) = 1438 (4) [M<sup>+</sup>], 1299 (3) [M<sup>+</sup> - H<sub>7</sub>C<sub>7</sub>S(O)], 1160 (100) [M<sup>+</sup> - 2H<sub>7</sub>C<sub>7</sub>S(O)].

C<sub>64</sub>H<sub>58</sub>O<sub>2</sub>P<sub>2</sub>Pt<sub>2</sub>S<sub>4</sub> (1439.3) Ber. C 53.40 H 4.00 S 8.91 Gef. C 53.14 H 4.09 S 8.53

 ${(Ph_3P)Pt[S(O) - p-ClC_6H_4][\mu-SPh]}_2$  (6d): 217 mg (0.29 mmol) 4 werden mit 77 mg (0.29 mmol) 1d in 18 ml Toluol umgesetzt. Es wird 17 h gerührt. Nach AAV1 erhält man ein goldgelbes Pulver, Ausb. 103 mg (49%), Zers.-P. ab 212°C. – IR (b) (KBr):  $\tilde{v} = 1010 \text{ cm}^{-1}$  (m), 999 (s) (S=O).

| $C_{60}H_{48}Cl_2O_2P_2Pt_2S_4$ (1452.5) | Ber. | C 49.62 | H 3.33 | S 8.83 |
|------------------------------------------|------|---------|--------|--------|
|                                          | Gef. | C 49.59 | H 3.41 | S 8.25 |

cis-(4-Sulfido-1-butansulfenato-S,S') bis(triphenylphosphan)platin(II) (7): Eine Lösung von 824 mg (1.1 mmol) 4 in 10 ml THF wird bei Raumtemp. tropfenweise mit der Lösung von 150 mg (1.1 mmol) 2 in 5 ml THF versetzt. Nach ca. 50 min beginnt ein voluminöser gelber Niederschlag auszufallen, der 3 h später abzentrifugiert, mit je 5 ml THF und Hexan gewaschen und anschließend im Hochvak. getrocknet wird; zitronengelbes Kristallpulver, Ausb. 367 mg (39%), Schmp. 169–171°C. – IR (b) (KBr):  $\tilde{v} = 977 \text{ cm}^{-1}$ (s) (S=O). – <sup>1</sup>H-NMR (c, e) (CDCl<sub>3</sub>):  $\delta = 1.31 \text{ (m}_{e}, 1H, H^1), 1.43 \text{ (m}_{e}, 1H, H^5), 1.52 \text{ (m}_{e}, 1H, H^6), 1.74 \text{ (m}_{e}, 1H, H^3), 2.20 \text{ [m}_{e}, 1H, H^2),$  $2.37 (m_{e}, 1H, H^4), 2.96 \text{ [m}_{e} \text{ mit} <sup>195</sup>Pt-Satelliten, <sup>3</sup>J(<sup>195</sup>Pt<sup>1</sup>H) = 42 Hz,$ 2H, H<sup>7</sup>/H<sup>8</sup>], 7.09–7.52 (m, 30 H, Aromaten-H). – <sup>13</sup>C-NMR (c, e) $(CD<sub>2</sub>Cl<sub>2</sub>): <math>\delta = 19.50$  (s, C-4), 25.62 (s, C-2), 29.62 (s, C-3), 54.22 (s,

Tab. 2. Atomkoordinaten (× 10<sup>4</sup>) und äquivalente isotrope thermische Parameter (pm<sup>2</sup> × 10<sup>-1</sup>) von 7 · CH<sub>2</sub>Cl<sub>2</sub>. Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen  $U_{ij}$ -Tensors

| ·     |          |          | ~        | II(ea) |
|-------|----------|----------|----------|--------|
|       | X        | y        |          |        |
| Pt    | 7368(1)  | 1836(1)  | 2594(1)  | 33(1)  |
| P(1)  | 7924(2)  | 294(2)   | 2176(1)  | 36(1)  |
| P(2)  | 9110(2)  | 3264(2)  | 2352(1)  | 38(1)  |
| 0     | 4983(6)  | -682(5)  | 2122(4)  | 88(4)  |
| S(1)  | 5381(2)  | 538(2)   | 2656(2)  | 56(1)  |
| S(2)  | 6937(2)  | 3400(2)  | 3312(2)  | 58(1)  |
| C(1)  | 5533(9)  | 538(7)   | 3908(6)  | 60(5)  |
| C(2)  | 6393(10) | 1721(8)  | 4683(6)  | 70(6)  |
| C(3)  | 5927(10) | 2657(8)  | 4772(7)  | 78(6)  |
| C(4)  | 5634(8)  | 2948(8)  | 3845(6)  | 65(5)  |
| C(5)  | 7000(7)  | -888(6)  | 1038(5)  | 40(4)  |
| C(6)  | 7378(8)  | -1782(6) | 753(5)   | 47(4)  |
| C(7)  | 6728(9)  | -2653(7) | -122(6)  | 61(5)  |
| C(8)  | 5714(10) | -2637(8) | -725(6)  | 68(5)  |
| C(9)  | 5335(8)  | -1754(8) | -460(6)  | 61(5)  |
| C(10) | 5972(8)  | -877(7)  | 416(5)   | 50(4)  |
| C(11) | 7788(7)  | -393(6)  | 3125(5)  | 36(3)  |
| C(12) | 7055(8)  | -1571(6) | 2953(6)  | 50(4)  |
| C(13) | 6994(9)  | -2040(7) | 3701(6)  | 58(5)  |
| C(14) | 7637(9)  | -1310(8) | 4619(6)  | 62(5)  |
| C(15) | 8338(8)  | -141(7)  | 4800(5)  | 52(4)  |
| C(16) | 8412(8)  | 324(7)   | 4053(5)  | 47(4)  |
| C(17) | 9573(7)  | 573(6)   | 2122(5)  | 38(4)  |
| C(18) | 481(8)   | 539(7)   | 2832(5)  | 51(4)  |
| C(19) | 1694(8)  | 689(7)   | 2705(6)  | 55(4)  |
| C(20) | 2014(9)  | 892(7)   | 1907(6)  | 61(5)  |
| C(21) | 1117(8)  | 911(7)   | 1201(6)  | 55(5)  |
| C(22) | 9911(8)  | 749(6)   | 1297(5)  | 45(4)  |
| C(23) | 9177(8)  | 2989(6)  | 1110(5)  | 39(4)  |
| C(24) | 0166(8)  | 3739(8)  | 849(6)   | 60(5)  |
| C(25) | 0142(10) | 3518(9)  | -102(7)  | 73(6)  |
| C(26) | 9155(11) | 2597(10) | -796(7)  | 79(7)  |
| C(27) | 8152(10) | 1864(8)  | -563(6)  | 70(5)  |
| C(28) | 8157(8)  | 2068(7)  | 387(6)   | 52(4)  |
| C(29) | 9186(7)  | 4739(6)  | 2590(5)  | 41(4)  |
| C(30) | 141 (8)  | 5708(7)  | 3312(6)  | 54(4)  |
| c(31) | 172(9)   | 6817(7)  | 3428(7)  | 70(5)  |
| C(32) | 9231(10) | 6936(8)  | 2834(7)  | 69(6)  |
| C(33) | 8260(9)  | 6005(8)  | 2125(6)  | 65(5)  |
| C(34) | 8259(8)  | 4909(7)  | 1997(6)  | 55(4)  |
| C(35) | 626(7)   | 3509(5)  | 3143(5)  | 36(3)  |
| C(36) | 686(9)   | 3624(6)  | 4102(6)  | 50(4)  |
| C(37) | 1794(10) | 3820(7)  | 4748(6)  | 60(5)  |
| C(38) | 2881(9)  | 3922(7)  | 4454(7)  | 63(5)  |
| C(39) | 2841(9)  | 3806(8)  | 3534(7)  | 70(5)  |
| C(40) | 1767(8)  | 3597(7)  | 2865(6)  | 57(2)  |
| C(40) | 1/4/(0)  | 5557(7)  | 1506(10) | 37(4)  |
| C1(1) | 4161(5)  | 5771/3)  | 1060(10) | 12/(0) |
| C1(2) | 3200(5)  | 599//    | 1007(4)  | 233(4) |
| 51(2) | 3203(3)  | 0200(4)  | 2342(3)  | 219(4) |

C-1).  $-{}^{31}$ P-NMR (d, f) (CDCl<sub>3</sub>):  $\delta = 21.73/21.33$  [AB-Spinsystem mit  ${}^{195}$ Pt-Satelliten,  ${}^{2}J({}^{31}$ P ${}^{31}$ P) = 26.6,  ${}^{1}J({}^{195}$ Pt ${}^{31}$ P) = 3201/2281Hz]. - MS (g): m/z (%) = 1282 (5) [M<sup>+</sup>], 1130 (3) [M<sup>+</sup> - H<sub>8</sub>C<sub>8</sub>S(O)], 1098 (2) [M<sup>+</sup> - H<sub>8</sub>C<sub>8</sub>S<sub>2</sub>(O)], 457 [M<sup>+</sup> - PPh<sub>3</sub> - 2H<sub>8</sub>C<sub>8</sub>S<sub>2</sub>(O) + H]. - Kristallstrukturanalyse<sup>[25]</sup>: Abb. 1, Tab. 1, 2. C<sub>40</sub>H<sub>38</sub>OP<sub>2</sub>PtS<sub>2</sub> (855.9) Ber. C 56.13 H 4.47 S 7.49

Gef. C 56.34 H 4.66 S 7.53

Umsetzung von  $(\eta^2$ -Ethylen)bis(triphenylphosphan)platin(II) (4) mit 1,4-Dihydro-2,3-benzodithiin-S-oxid (3) zu 8: 224 mg (0.3 mmol) 4 in 10 ml THF werden mit 55 mg (0.3 mmol) 3, gelöst in 10 ml THF, bei Raumtemp. umgesetzt. Etwa nach 15 min bildet sich ein hellgelber Niederschlag, der nach insgesamt 1.5 h abzentrifugiert und analog zu 6a-d weiterverarbeitet wird, Ausb. 98 mg (51%), Schmp. 255.5-256.5°C. – IR (b) (KBr):  $\tilde{v} = 988 \text{ cm}^{-1}$  (ssh) (S=O).

 $\begin{array}{c} C_{52}H_{46}O_2P_2Pt_2S_4 \ (1283.3) \\ \text{Gef. C } 48.66 \ \text{H } 3.61 \ \text{S } 9.97 \\ \text{Gef. C } 48.76 \ \text{H } 4.27 \ \text{S } 9.81 \end{array}$ 

Metallkomplexe mit funktionalisierten Schwefel-Liganden, III

Kristallstrukturbestimmung von 7 · CH<sub>2</sub>Cl<sub>2</sub><sup>[25]</sup>: Überschichten einer Lösung von 7 in CH<sub>2</sub>Cl<sub>2</sub> mit Hexan ergab hellgelbe Kristalle. Allgemeine Angaben sind in Tab. 1, Atomkoordinaten in Tab. 2 enthalten.

- \* Herrn Professor Wolfgang Beck zum 60. Geburtstag gewidmet. <sup>[1]</sup> II. Mitteilung: W. Weigand, G. Bosl, C. Robl, Z. Naturforsch., Teil B, 1992, 47, 39–44.
- <sup>[2]</sup> T. Bayer, Dissertation, Univ. München, 1988; W. Breu, Disser-
- tation, Univ. München, 1991. <sup>[3]</sup> <sup>[3a]</sup> W. Weigand, G. Bosl, D. Proft-Haslauer, W. Breu, H. Wagner in: Herbstversammlung der Schweizerischen Chemischen Ge-sellschaft, Bern, **1990**, S. 94 – <sup>[3b]</sup> W. Weigand, G. Bosl, C. Robl, W. Partin, H. W. Bartin, S. 24, C. Robl, W. Breu, H. Wagner in: 23. GDCh-Hauptversammlung, München, VCH Verlagsgesellschaft mbH, W-6940 Weinheim, 1991, S. 140.
- [4] A. Shaver, P.-Y. Plouffe, J. Am. Chem. Soc. 1991, 113, 7780 - 7782.
- <sup>[5]</sup> E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain, R. Aspitz-Castro, J. Am. Chem. Soc. **1986**, 108, 7045-7055; H. Wagner, W. Breu in: "Tagungsbericht Knoblauch, Symposium über die Chemie, Pharmakologie und medizinische Anwendung", Dtsch.
- Apoth. Ztg. 1989, 129, 28. Suppl., 21–23. <sup>[6]</sup> H. Wagner, W. Dorsch, T. Bayer, W. Breu, F. Willer, Prostaglandins, Leukotrienes and Essential Fatty Acids, 1990, 39, 59-63.
- <sup>[7]</sup> T. Takata, T. Endo in: The Chemistry of Sulphinic Acids, Esters and their Derivatives (Hrsg.: S. Patai), John Wiley & Sons Ltd., Chichester, UK, 1990, Kap. 18 und dort zitierte Literatur.
- <sup>[8]</sup> D. Barnard, J. Chem. Soc. 1957, 4675-4676.
- <sup>(9)</sup> E. Block, J. O'Connor, J. Am. Chem. Soc. 1974, 96, 3921 3929; P. Koch, E. Ciuffarin, A. Fava, *ibid.* 1970, 92, 5971 5977.
  <sup>(10)</sup> <sup>(10a)</sup> V. D. Small, J. H. Bailey, C. J. Cavallito, J. Am. Chem. Soc. 1947, 69, 1710–1713. <sup>(10b)</sup> G. A. Urove, M. E. Welker, B. E. Eaton, J. Organomet. Chem. 1990, 384, 105–114. <sup>(10c)</sup> N. Isen-base, H. E. Harkmandoon, *ist. J. Sulfar. Chem.* 4, 1071. berg, H. F. Herbrandson, Int. J. Sulfur Chem. A, 1971, 1, 179-189.
- <sup>[11]</sup> E. Juaristi, J. S. Cruz-Sánchez, J. Org. Chem. 1988, 53, 3334-3338. Die cyclischen Sechsring-Thiosulfinate liegen in einer Sesselkonformation vor, in der die S=O-Gruppe und das am sulfidischen S-Atom positionierte Lone Pair eine antiperiplanare Stellung einnehmen. Ein stabilisierender stereoelektro-
- nischer Effekt [n(S) $\rightarrow \sigma^*$ (S=O)] wird hier angenommen. <sup>[12]</sup> [<sup>12a]</sup> W. Beck, K. Schorpp, K. H. Stetter, Z. Naturforsch., Teil B, **1971**, 26, 684–689. <sup>[12b]</sup> R. Zanella, R. Ros, M. Graziani, Inorg. Chem. 1973, 12, 2736-2738.

#### CAS-Registry-Nummern

1a: 13882-12-7 / 1b: 1208-20-4 / 1c: 6481-73-8 / 1d: 26974-31-2 / 2: 7153-76-6 / 3: 78347-76-9 / 4: 12120-15-9 / 5a: 139705-15-0 / 5b:

- <sup>[13]</sup> J. Drabowicz, P. Łyżwa, M. Mikołajczyk in: The Chemistry Sulphenic Acids and their Derivatives (Hrsg.: S. Patai), John Wiley and Sons Ltd., Chichester, UK, 1990, Kap. 5 und dort zitierte Literatur.
- <sup>[14]</sup> T. A. George, D. D. Watkins, Jr., Inorg. Chem. 1973, 12, 398 - 402
- <sup>398</sup> 402. <sup>[15]</sup> [<sup>15a</sup>] B. A. Lange, K. Libson, E. Deutsch, R. C. Elder, *Inorg. Chem.* **1976**, *15*, 2985 2989. <sup>[15b]</sup> C. P. Sloan, J. H. Krueger, Inorg. Chem. **1975**, *14*, 1481 1485. <sup>[15c]</sup> D. L. Herting, C. P. Sloan, *I. Herting, C. P. Sloan*, *178*, 17 A. W. Cabral, J. H. Krueger, *Inorg. Chem.* **1978**, *17*, 1649–1654. – <sup>[15d]</sup> W. G. Jackson, A. M. Sargeson, P. O. Whimp, J. Chem. Soc., Chem. Commun. **1976**, 934–935. – <sup>[15e]</sup> I. K. Adzamli, K. Libson, J. D. Lydon, R. C. Elder, E. Deutsch, Inorg. Chem. 1979, 18, 303-311. – <sup>[15]</sup> J. D. Lydon, E. Deutsch, Inorg. Chem. 1982, 21, 3180-3185.
- <sup>[16]</sup> W. Weigand, G. Bosl, Z. Naturforsch., Teil B, zur Publikation
- <sup>[17]</sup> (1<sup>7a</sup>] J. Messelhäuser, K. U. Gutensohn, I.-P. Lorenz, W. Hiller, J. Organomet. Chem. 1987, 321, 377-388. <sup>[17b]</sup> A. Kramer, R. Lingnau, I.-P. Lorenz, H. A. Mayer, Chem. Ber. 1990, 123,  $182\overline{1} - 1826.$
- <sup>[18]</sup> S. H. Mastin, Inorg. Chem. 1974, 13, 1003-1005; H. A. Brune, M. Falck, R. Hemmer, G. Schmidtberg, H. G. Alt, Chem. Ber. **1984**, 117, 2791-2802.
- <sup>[19]</sup> S. W. Bass, S. A. Evans Jr., J. Org. Chem. 1980, 45, 710-715. <sup>[20]</sup> C. Fenselau, R. J. Cotter, Chem. Rev. 1987, 87, 501-512; J. M. Miller, Mass Spectrom. Rev. 1989, 9, 319.
- <sup>[21]</sup> I. Dieter-Wurm, M. Sabat, B. Lippert, J. Am. Chem. Soc. 1992, 114, 357 --- 359
- <sup>[22]</sup> O. A. Diachenko, L. O. Atovmian, S. M. Aldoshin, V. A. Kogan, S. G. Kochin, O. A. Osipov, Izv. Akad. Nauk SSSR, Ser. Khim. 1976, 9, 2147; T. Glowiak, T. Ciszewska, Acta Crystallogr., Sect. B, 1982, 38, 1735–1737; A. S. Antsishkina, M. A. Poraikoshits, A. L. Nivorozhkin, I. S. Vasilchenko, L. E. Nivorozhkin, A. D. Garnovsky, Inorg. Chim. Acta 1991, 180, 151-152.
- <sup>[23]</sup> D. Bandyopadhyay, P. Bandyopadhyay, A. Chakravorty, F. A. Cotton, L. R. Falvello, Inorg. Chem. 1984, 23, 1785-1787. <sup>124</sup> U. Nagel, Chem. Ber. 1982, 115, 1998-1999.
- <sup>[25]</sup> Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55993, der Autorennamen und des vollständigen Literaturzitates angefordert werden.

[458/91]

139705-16-1 / 6a: 139705-17-2 / 6b: 139705-18-3 / 6c: 139705-19-4 / 6d: 139705-20-7 / 7: 139705-21-8 / 7 · CH<sub>2</sub>Cl<sub>2</sub>: 139705-23-0 / 8: 139705-22-9